3.2.29 \(\int \frac {(g \cos (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}{\sqrt {a+a \sin (e+f x)}} \, dx\) [129]

Optimal. Leaf size=122 \[ \frac {2 c (g \cos (e+f x))^{5/2}}{3 f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {2 c g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

2/3*c*(g*cos(f*x+e))^(5/2)/f/g/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)+2*c*g*(cos(1/2*f*x+1/2*e)^2)^(1/2
)/cos(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(g*cos(f*x+e))^(1/2)/f/(a+a*sin(f*
x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.36, antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2930, 2921, 2721, 2719} \begin {gather*} \frac {2 c (g \cos (e+f x))^{5/2}}{3 f g \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {2 c g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((g*Cos[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]])/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

(2*c*(g*Cos[e + f*x])^(5/2))/(3*f*g*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) + (2*c*g*Sqrt[Cos[e + f
*x]]*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2921

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Dist[g*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), In
t[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2
, 0]

Rule 2930

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e
 + f*x])^n/(f*g*(m + n + p))), x] + Dist[a*((2*m + p - 1)/(m + n + p)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e +
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] &&
EqQ[a^2 - b^2, 0] && GtQ[m, 0] && NeQ[m + n + p, 0] &&  !LtQ[0, n, m] && IntegersQ[2*m, 2*n, 2*p]

Rubi steps

\begin {align*} \int \frac {(g \cos (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}{\sqrt {a+a \sin (e+f x)}} \, dx &=\frac {2 c (g \cos (e+f x))^{5/2}}{3 f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+c \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx\\ &=\frac {2 c (g \cos (e+f x))^{5/2}}{3 f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {(c g \cos (e+f x)) \int \sqrt {g \cos (e+f x)} \, dx}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {2 c (g \cos (e+f x))^{5/2}}{3 f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {\left (c g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {2 c (g \cos (e+f x))^{5/2}}{3 f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {2 c g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 2.21, size = 215, normalized size = 1.76 \begin {gather*} \frac {\sqrt {-i a e^{-i (e+f x)} \left (i+e^{i (e+f x)}\right )^2} \sqrt {e^{-i (e+f x)} \left (1+e^{2 i (e+f x)}\right )} (g \cos (e+f x))^{3/2} \left (\sqrt {1+e^{2 i (e+f x)}} \left (1-6 i e^{i (e+f x)}+e^{2 i (e+f x)}\right )+12 i e^{i (e+f x)} \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (e+f x)}\right )\right ) \sqrt {c-c \sin (e+f x)}}{3 a \left (1+e^{2 i (e+f x)}\right )^{3/2} f \cos ^{\frac {3}{2}}(e+f x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((g*Cos[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]])/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

(Sqrt[((-I)*a*(I + E^(I*(e + f*x)))^2)/E^(I*(e + f*x))]*Sqrt[(1 + E^((2*I)*(e + f*x)))/E^(I*(e + f*x))]*(g*Cos
[e + f*x])^(3/2)*(Sqrt[1 + E^((2*I)*(e + f*x))]*(1 - (6*I)*E^(I*(e + f*x)) + E^((2*I)*(e + f*x))) + (12*I)*E^(
I*(e + f*x))*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(e + f*x))])*Sqrt[c - c*Sin[e + f*x]])/(3*a*(1 + E^((
2*I)*(e + f*x)))^(3/2)*f*Cos[e + f*x]^(3/2))

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.24, size = 361, normalized size = 2.96

method result size
default \(-\frac {2 \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \left (g \cos \left (f x +e \right )\right )^{\frac {3}{2}} \left (3 i \sin \left (f x +e \right ) \cos \left (f x +e \right ) \EllipticF \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}-3 i \sin \left (f x +e \right ) \cos \left (f x +e \right ) \EllipticE \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}+3 i \sin \left (f x +e \right ) \EllipticF \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}-3 i \sin \left (f x +e \right ) \EllipticE \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}+\left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-3 \left (\cos ^{2}\left (f x +e \right )\right )+3 \cos \left (f x +e \right )\right )}{3 f \left (\sin \left (f x +e \right )-1\right ) \cos \left (f x +e \right ) \sin \left (f x +e \right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}}\) \(361\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/f*(-c*(sin(f*x+e)-1))^(1/2)*(g*cos(f*x+e))^(3/2)*(3*I*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*cos(f*x+e
)*sin(f*x+e)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*(1/(1+cos(f*x+e)))^(1/2)-3*I*EllipticE(I*(-1+cos(f*x+e))/sin(f*
x+e),I)*cos(f*x+e)*sin(f*x+e)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*(1/(1+cos(f*x+e)))^(1/2)+3*I*EllipticF(I*(-1+c
os(f*x+e))/sin(f*x+e),I)*sin(f*x+e)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*(1/(1+cos(f*x+e)))^(1/2)-3*I*EllipticE(I
*(-1+cos(f*x+e))/sin(f*x+e),I)*sin(f*x+e)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*(1/(1+cos(f*x+e)))^(1/2)+cos(f*x+e
)^2*sin(f*x+e)-3*cos(f*x+e)^2+3*cos(f*x+e))/(sin(f*x+e)-1)/cos(f*x+e)/sin(f*x+e)/(a*(1+sin(f*x+e)))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)*sqrt(-c*sin(f*x + e) + c)/sqrt(a*sin(f*x + e) + a), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 120, normalized size = 0.98 \begin {gather*} \frac {-3 i \, \sqrt {2} \sqrt {a c g} g {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + 3 i \, \sqrt {2} \sqrt {a c g} g {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right ) + 2 \, \sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} g}{3 \, a f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

1/3*(-3*I*sqrt(2)*sqrt(a*c*g)*g*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) + I*sin(f*x + e
))) + 3*I*sqrt(2)*sqrt(a*c*g)*g*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) - I*sin(f*x + e
))) + 2*sqrt(g*cos(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*g)/(a*f)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))**(3/2)*(c-c*sin(f*x+e))**(1/2)/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3005 deep

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,\sqrt {c-c\,\sin \left (e+f\,x\right )}}{\sqrt {a+a\,\sin \left (e+f\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((g*cos(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(1/2))/(a + a*sin(e + f*x))^(1/2),x)

[Out]

int(((g*cos(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(1/2))/(a + a*sin(e + f*x))^(1/2), x)

________________________________________________________________________________________